Who is where? Matching people in video to wearable acceleration during crowded mingling events

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

11 Citas (Scopus)

Resumen

We address the challenging problem of associating acceleration data from a wearable sensor with the corresponding spatio-temporal region of a person in video during crowded mingling scenarios. This is an important first step for multisensor behavior analysis using these two modalities. Clearly, as the numbers of people in a scene increases, there is also a need to robustly and automatically associate a region of the video with each person's device. We propose a hierarchical association approach which exploits the spatial context of the scene, outperforming the state-of-the-art approaches significantly. Moreover, we present experiments on matching from 3 to more than 130 acceleration and video streams which, to our knowledge, is significantly larger than prior works where only up to 5 device streams are associated.

Idioma originalInglés
Título de la publicación alojadaMM 2016 - Proceedings of the 2016 ACM Multimedia Conference
EditorialAssociation for Computing Machinery, Inc
Páginas267-271
Número de páginas5
ISBN (versión digital)9781450336031
DOI
EstadoPublicada - 1 oct 2016
Evento24th ACM Multimedia Conference, MM 2016 - Amsterdam, Reino Unido
Duración: 15 oct 201619 oct 2016

Serie de la publicación

NombreMM 2016 - Proceedings of the 2016 ACM Multimedia Conference

Conferencia

Conferencia24th ACM Multimedia Conference, MM 2016
País/TerritorioReino Unido
CiudadAmsterdam
Período15/10/1619/10/16

Huella

Profundice en los temas de investigación de 'Who is where? Matching people in video to wearable acceleration during crowded mingling events'. En conjunto forman una huella única.

Citar esto