Vectors and graphs: Two representations to cluster Web sites using hyperstructure

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

Web site clustering consists in finding meaningful groups of related web sites. How related is some web site to another is a question that depends on how we represent web sites. Traditionally, vectors and graphs have been two important structures to represent individuals in a population. Both representations can play an important role in the web area if hyperstructure is considered. By analyzing the way web sites are linked, we can build vectors or graphs to understand how a web site collection is partitioned. In this paper, we analyze these two models and four associated algorithms: k-means and self-organizing maps (SOM) with vectors, simulated annealing and genetic algorithms with graphs. For testing these ideas we clustered some web sites in the Central American web. We compare the results for clustering this web site collection using both models and show what kind of clusters each one produces.

Idioma originalInglés
Título de la publicación alojadaProceedings - LA-Web 06
Subtítulo de la publicación alojadaFourth Latin American Web Congress
Páginas172-175
Número de páginas4
DOI
EstadoPublicada - 2006
EventoLA-Web 06: 4th Latin American Web Congress - Cholula, México
Duración: 25 oct 200627 oct 2006

Serie de la publicación

NombreProceedings - LA-Web 06: Fourth Latin American Web Congress

Conferencia

ConferenciaLA-Web 06: 4th Latin American Web Congress
País/TerritorioMéxico
CiudadCholula
Período25/10/0627/10/06

Huella

Profundice en los temas de investigación de 'Vectors and graphs: Two representations to cluster Web sites using hyperstructure'. En conjunto forman una huella única.

Citar esto