Using Deep Convolutional Networks for Species Identification of Xylotheque Samples

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

13 Citas (Scopus)

Resumen

Forest species identification is critical to scientifically support many environmental, commercial, forensic, archaeological, and paleontological actividades. Therefore, it is very important to develop fast and accurate identification systems. We present a deep CNN for automated forest species identification based on macroscopic images of wood cuts. We first implement and study a modified version of the LeNet convolutional network, which is trained from scratch with a database of macroscopic images of 41 forest species of the Brazilian flora. With this network we achieve a top-1 accuracy of 93.6%. Additionally, we fine-tune the Resnet50 model with pre-trained weights on Imagenet to reach a top-1 accuracy of 98.03%, which improves previous published results of research on the same image database.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión impresa)9781538675069
DOI
EstadoPublicada - 12 sept 2018
Evento2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - San Carlos, Costa Rica
Duración: 18 jul 201820 jul 2018

Serie de la publicación

Nombre2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - Proceedings

Conferencia

Conferencia2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018
País/TerritorioCosta Rica
CiudadSan Carlos
Período18/07/1820/07/18

Huella

Profundice en los temas de investigación de 'Using Deep Convolutional Networks for Species Identification of Xylotheque Samples'. En conjunto forman una huella única.

Citar esto