Unsharp masking layer: Injecting prior knowledge in convolutional networks for image classification

Jose Carranza-Rojas, Saul Calderon-Ramirez, Adán Mora-Fallas, Michael Granados-Menani, Jordina Torrents-Barrena

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Image enhancement refers to the enrichment of certain image features such as edges, boundaries, or contrast. The main objective is to process the original image so that the overall performance of visualization, classification and segmentation tasks is considerably improved. Traditional techniques require manual fine-tuning of the parameters to control enhancement behavior. To date, recent Convolutional Neural Network (CNN) approaches frequently employ the aforementioned techniques as an enriched pre-processing step. In this work, we present the first intrinsic CNN pre-processing layer based on the well-known unsharp masking algorithm. The proposed layer injects prior knowledge about how to enhance the image, by adding high frequency information to the input, to subsequently emphasize meaningful image features. The layer optimizes the unsharp masking parameters during model training, without any manual intervention. We evaluate the network performance and impact on two applications: CIFAR100 image classification, and the PlantCLEF identification challenge. Results obtained show a significant improvement over popular CNNs, yielding 9.49% and 2.42% for PlantCLEF and general-purpose CIFAR100, respectively. The design of an unsharp enhancement layer plainly boosts the accuracy with negligible performance cost on simple CNN models, as prior knowledge is directly injected to improve its robustness.

Idioma originalInglés
Título de la publicación alojadaArtificial Neural Networks and Machine Learning – ICANN 2019
Subtítulo de la publicación alojadaImage Processing - 28th International Conference on Artificial Neural Networks, 2019, Proceedings
EditoresIgor V. Tetko, Pavel Karpov, Fabian Theis, Vera Kurková
EditorialSpringer Verlag
Páginas3-16
Número de páginas14
ISBN (versión impresa)9783030305079
DOI
EstadoPublicada - 2019
Evento28th International Conference on Artificial Neural Networks, ICANN 2019 - Munich, Alemania
Duración: 17 sept 201919 sept 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11729 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia28th International Conference on Artificial Neural Networks, ICANN 2019
País/TerritorioAlemania
CiudadMunich
Período17/09/1919/09/19

Huella

Profundice en los temas de investigación de 'Unsharp masking layer: Injecting prior knowledge in convolutional networks for image classification'. En conjunto forman una huella única.

Citar esto