Tuning the zeolite acidity enables selectivity control by suppressing ketene formation in lignin catalytic pyrolysis

Zeyou Pan, Allen Puente-Urbina, Syeda Rabia Batool, Andras Bodi, Xiangkun Wu, Zihao Zhang, Jeroen A. van Bokhoven, Patrick Hemberger

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

Unveiling catalytic mechanisms at a molecular level aids rational catalyst design and selectivity control for process optimization. In this study, we find that the Brønsted acid site density of the zeolite catalyst efficiently controls the guaiacol catalytic pyrolysis mechanism. Guaiacol demethylation to catechol initiates the reaction, as evidenced by the detected methyl radicals. The mechanism branches to form either fulvenone (c-C5H4 = C = O), a reactive ketene intermediate, by catechol dehydration, or phenol by acid-catalyzed dehydroxylation. At high Brønsted acid site density, fulvenone formation is inhibited due to surface coordination configuration of its precursor, catechol. By quantifying reactive intermediates and products utilizing operando photoelectron photoion coincidence spectroscopy, we find evidence that ketene suppression is responsible for the fivefold phenol selectivity increase. Complementary fulvenone reaction pathway calculations, along with 29Si NMR-MAS spectroscopy results corroborate the mechanism. The proposed, flexible operando approach is applicable to a broad variety of heterogeneous catalytic reactions.

Idioma originalInglés
Número de artículo4512
PublicaciónNature Communications
Volumen14
N.º1
DOI
EstadoPublicada - dic 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Tuning the zeolite acidity enables selectivity control by suppressing ketene formation in lignin catalytic pyrolysis'. En conjunto forman una huella única.

Citar esto