Systematic Literature Review: Machine Learning for Software Fault Prediction

Gabriel Omar Navarro Cedeno, Katherine Cortes Moya, Ahmed Somarribas Dormond, Antonio Gonzalez-Torres, Yenory Rojas-Hernandez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This article presents a systematic review of the literature on the use of machine learning for software fault prediction. The objective of the paper is to determine how machine learning algorithms have been used in the approach of models for this type of prediction. The analysis carried out contemplates 52 articles that were published between 2009 and 2022. The study covers the categorization of the algorithms based on the way they were used in the applications. The results showed that the most used algorithms are based on supervised learning, Support Vector Machine (SVM), Random Forest and Naive Bayes; however, the most effective prediction models used a combination of different algorithms.

Idioma originalInglés
Título de la publicación alojadaProceeding of the 2023 IEEE 41st Central America and Panama Convention, CONCAPAN XLI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350380927
DOI
EstadoPublicada - 2023
Evento41st IEEE Central America and Panama Convention, CONCAPAN 2023 - Tegucigalpa, Honduras
Duración: 8 nov 202310 nov 2023

Serie de la publicación

NombreProceeding of the 2023 IEEE 41st Central America and Panama Convention, CONCAPAN XLI 2023

Conferencia

Conferencia41st IEEE Central America and Panama Convention, CONCAPAN 2023
País/TerritorioHonduras
CiudadTegucigalpa
Período8/11/2310/11/23

Huella

Profundice en los temas de investigación de 'Systematic Literature Review: Machine Learning for Software Fault Prediction'. En conjunto forman una huella única.

Citar esto