Solar panels recognition based on machine learning

Raquel Miranda Perez, Jaffette Solano Arias, Abel Mendez-Porras

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Renewable energies, sustainable practices and carbon neutrality have become important goals for countries. Solar panels are a good alternative to produce energy. Monitoring, maintenance and fault detection processes represent aspects of vital importance when making concrete decisions that affects a certain percentage of the solar farms. In this paper we present a system capable of detecting solar panels location through machine learning.The main goal is to aid solar panels farm managers to locate solar panels in real time in a real area by using a machine learning model. With the use of a camera and a drone, we will be able to fly over the solar farm and identify the panels. The YOLO (You Only Look Once) object detection model is used, training and testing the neural network with a data-set of 280 images. The neural network was capable of recognize the panels in different images and videos in which we put it to the test but getting a good precision at the end.

Idioma originalInglés
Título de la publicación alojadaProceedings - 4th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728147871
DOI
EstadoPublicada - ago 2019
Evento4th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2019 - 4th Costa Rican Conference on Research in Computer Science and Informatics, JoCICI 2019 - San Jose, Costa Rica
Duración: 19 ago 201920 ago 2019

Serie de la publicación

NombreProceedings - 4th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2019

Conferencia

Conferencia4th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2019 - 4th Costa Rican Conference on Research in Computer Science and Informatics, JoCICI 2019
País/TerritorioCosta Rica
CiudadSan Jose
Período19/08/1920/08/19

Huella

Profundice en los temas de investigación de 'Solar panels recognition based on machine learning'. En conjunto forman una huella única.

Citar esto