Resource Optimization of the Eulerian Video Magnification Algorithm Towards an Embedded Architecture

Ki Sung Lim, Eduardo Moya-Bello, Luis Chavarria-Zamora

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The use of algorithms like the Eulerian Video Magnification (EVM) could make a low-cost alternative for monitoring vital signs. A remote, non-invasive patient monitoring is advantageous, and it is possible using EVM. However, computational resources may be optimized to be executed in memory and power efficient computer architectures. Current implementations of the EVM lack of parallelization and its memory management can be improved using low-level languages. Our project seeks to optimize the Magnification algorithm to detect vital signs like respiratory and heart rate, non-invasive and more efficiently. According to our tests, both execution times and memory use are improved. The obtained results show an average improvement of 434% in execution times, with a maximum speedup of 746%. In addition, the implemented algorithm utilizes 200 MB less memory in average.

Idioma originalInglés
Título de la publicación alojada2021 IEEE URUCON, URUCON 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas576-579
Número de páginas4
ISBN (versión digital)9781665424431
DOI
EstadoPublicada - 2021
Evento2021 IEEE URUCON, URUCON 2021 - Montevideo, Uruguay
Duración: 24 nov 202126 nov 2021

Serie de la publicación

Nombre2021 IEEE URUCON, URUCON 2021

Conferencia

Conferencia2021 IEEE URUCON, URUCON 2021
País/TerritorioUruguay
CiudadMontevideo
Período24/11/2126/11/21

Huella

Profundice en los temas de investigación de 'Resource Optimization of the Eulerian Video Magnification Algorithm Towards an Embedded Architecture'. En conjunto forman una huella única.

Citar esto