Ranking protein-protein docking results using steered molecular dynamics and potential of mean force calculations

Laura J. Kingsley, Juan Esquivel-Rodríguez, Ying Yang, Daisuke Kihara, Markus A. Lill

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

25 Citas (Scopus)

Resumen

Crystallization of protein-protein complexes can often be problematic and therefore computational structural models are often relied on. Such models are often generated using protein-protein docking algorithms, where one of the main challenges is selecting which of several thousand potential predictions represents the most near-native complex. We have developed a novel technique that involves the use of steered molecular dynamics (sMD) and umbrella sampling to identify near-native complexes among protein-protein docking predictions. Using this technique, we have found a strong correlation between our predictions and the interface RMSD (iRMSD) in ten diverse test systems. On two of the systems, we investigated if the prediction results could be further improved using potential of mean force calculations. We demonstrated that a near-native (<2.0 Å iRMSD) structure could be identified in the top-1 ranked position for both systems.

Idioma originalInglés
Páginas (desde-hasta)1861-1865
Número de páginas5
PublicaciónJournal of computational chemistry
Volumen37
N.º20
DOI
EstadoPublicada - 1 jul 2016
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Ranking protein-protein docking results using steered molecular dynamics and potential of mean force calculations'. En conjunto forman una huella única.

Citar esto