Prototyping a Biologically Plausible Neuron Model on a Heterogeneous CPU-FPGA Board

Kaleb Alfaro-Badilla, Alfonso Chacon-Rodriguez, Georgios Smaragdos, Christos Strydis, Andres Arroyo-Romero, Javier Espinoza-Gonzalez, Carlos Salazar-Garcia

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

A heterogeneous hardware-software system implemented on an Avnet ZedBoard Zynq SoC platform, is proposed for the computation of an extended Hodgkin Huxley (eHH), biologically plausible neural model. SoC's ARM A9 is in charge of handling execution of a single neuron as defined in the eHH model, each with a O(N) computational complexity, while the computation of the gap-junctions interactions for each cell is offloaded on the SoC's FPGA, cutting its O(N2) complexity by exploiting parallel-computing hardware techniques. The proposed hw-sw solution allows for speed-ups of about 18 times visa-vis à vectorized software implementation on the SoC's cores, and is comparable to the speed of the same model optimized for a 64-bit Intel Quad Core i7, at 3.9GHz.

Idioma originalInglés
Título de la publicación alojada2019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas5-8
Número de páginas4
ISBN (versión digital)9781728104522
DOI
EstadoPublicada - 14 mar 2019
Evento10th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2019 - Armenia, Colombia
Duración: 24 feb 201927 feb 2019

Serie de la publicación

Nombre2019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings

Conferencia

Conferencia10th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2019
País/TerritorioColombia
CiudadArmenia
Período24/02/1927/02/19

Huella

Profundice en los temas de investigación de 'Prototyping a Biologically Plausible Neuron Model on a Heterogeneous CPU-FPGA Board'. En conjunto forman una huella única.

Citar esto