Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives

Jorge Castro, Esteban Meneses

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Automatic segmentation and classification methods for bioacoustic signals enable real-time monitoring, population estimation, as well as other important tasks for the conservation, management, and study of wildlife. These methods normally require a filter or a denoising strategy to enhance relevant information in the input signal and avoid false positive detections. This denoising stage is usually the performance bottleneck of such methods. In this paper, we parallelize a denoising algorithm for tonal bioacoustic signals using mainly OpenACC directives. The implemented program was executed in both multicore and GPU architectures. The proposed parallelized algorithm achieves a higher speedup on GPU than CPU, leading to a 10.67 speedup compared to the original sequential algorithm in C++.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión impresa)9781538675069
DOI
EstadoPublicada - 12 sept 2018
Evento2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - San Carlos, Costa Rica
Duración: 18 jul 201820 jul 2018

Serie de la publicación

Nombre2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - Proceedings

Conferencia

Conferencia2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018
País/TerritorioCosta Rica
CiudadSan Carlos
Período18/07/1820/07/18

Huella

Profundice en los temas de investigación de 'Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives'. En conjunto forman una huella única.

Citar esto