TY - JOUR
T1 - Optimization of Casa-mot analysis of donkey sperm
T2 - Optimum frame rate and values of kinematic variables for different counting chamber and fields
AU - Gacem, Sabrina
AU - Catalán, Jaime
AU - Valverde, Anthony
AU - Soler, Carles
AU - Miró, Jordi
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11
Y1 - 2020/11
N2 - In order to optimize the donkey sperm motility analysis by the CASA (Computer Assisted Sperm Analysis)-Mot system, twelve ejaculates were collected from six jackasses. Capillary loaded chamber (CLC), ISAS®D4C depths 10 and 20 µm, ISAS®D4C Leja 20 and drop displacement chamber (DDC), Spermtrack® (Spk) depths 10 and 20 µm were used. Sperm kinematic variables were evaluated using each chamber and a high-resolution camera capable of capturing a maximum of 500 frames/second (fps). The optimum frame rate (OFR) (defined according to curvilinear velocity—VCL) was dependent on chamber type. The highest OFR obtained was 278.46 fps by Spk20. Values for VCL, straight-line velocity (VSL), straightness (STR), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) were high in DDC and 10 µm depth. In both DDC 10 and 20 µm, the sperm velocities (VCL, VSL, VAP) and ALH values decreased significantly from the centre to the edges, while Wobble and BCF increased. No defined behavior was observed along the CLC. However, all the kinematic variables had a higher value in a highly concentrated sample, in both chamber types. In conclusion, analyzing a minimum of nine fields at 250 fps from the centre to the edges in Spk10 chamber using a dilution of 30 × 106 sperm/mL offers the best choice for donkey computerised sperm motility analysis.
AB - In order to optimize the donkey sperm motility analysis by the CASA (Computer Assisted Sperm Analysis)-Mot system, twelve ejaculates were collected from six jackasses. Capillary loaded chamber (CLC), ISAS®D4C depths 10 and 20 µm, ISAS®D4C Leja 20 and drop displacement chamber (DDC), Spermtrack® (Spk) depths 10 and 20 µm were used. Sperm kinematic variables were evaluated using each chamber and a high-resolution camera capable of capturing a maximum of 500 frames/second (fps). The optimum frame rate (OFR) (defined according to curvilinear velocity—VCL) was dependent on chamber type. The highest OFR obtained was 278.46 fps by Spk20. Values for VCL, straight-line velocity (VSL), straightness (STR), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) were high in DDC and 10 µm depth. In both DDC 10 and 20 µm, the sperm velocities (VCL, VSL, VAP) and ALH values decreased significantly from the centre to the edges, while Wobble and BCF increased. No defined behavior was observed along the CLC. However, all the kinematic variables had a higher value in a highly concentrated sample, in both chamber types. In conclusion, analyzing a minimum of nine fields at 250 fps from the centre to the edges in Spk10 chamber using a dilution of 30 × 106 sperm/mL offers the best choice for donkey computerised sperm motility analysis.
KW - Capillary loaded chambers
KW - Chamber depth
KW - Drop displacement chambers
KW - Field
KW - Frame rate
KW - Sperm dilution
UR - http://www.scopus.com/inward/record.url?scp=85094327133&partnerID=8YFLogxK
U2 - 10.3390/ani10111993
DO - 10.3390/ani10111993
M3 - Artículo
AN - SCOPUS:85094327133
SN - 2076-2615
VL - 10
SP - 1
EP - 16
JO - Animals
JF - Animals
IS - 11
M1 - 1993
ER -