TY - JOUR
T1 - Learning Statics through Physical Manipulative Tools and Visuohaptic Simulations
T2 - The Effect of Visual and Haptic Feedback
AU - Walsh, Yoselyn
AU - Magana, Alejandra J.
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/4
Y1 - 2023/4
N2 - In this study, we: (a) compared the differences in the learning of friction concepts between a physical manipulative tool (PMT) and a visuohaptic simulation (VHS) in four different configurations (visually enhanced feedback on/off, force feedback on/off), and (b) analyzed the influence of the visual and haptic feedback for learning the concept of friction. Specifically, this study explored the role of an object’s size in friction. In a three-stage experiment (i.e., pre-test, experimentation, and post-test), 206 undergraduate students compared the friction force, speed, acceleration, and traveled distance between two cubes with the same weight but different sizes pushed on a smooth surface. Our results suggest that (a) VHS was an effective tool for promoting the learning of friction concepts actively, (b) learners in the VHS condition outperformed the learners in the PMT condition (PMT < VHS), (c) the easy identification of the forces by enhanced visual cues promoted the acquisition of scientific knowledge, (d) the haptic feedback promoted a grounded experience for learning about friction, and (e) learners in the Sequenced (H→H + V) condition had more learning benefits than the Simultaneous (H + V), Visual, and Haptic conditions. Students in the Sequenced (H→H + V) condition took advantage of the affordances of the virtual and physical manipulatives. The implication for teaching and learning is that the virtual and physical affordances of the learning tools and the students’ prior knowledge must be considered in the design of the VHS to enhance learning. For the education research, the study implied that body actions positively impacted the learning experience.
AB - In this study, we: (a) compared the differences in the learning of friction concepts between a physical manipulative tool (PMT) and a visuohaptic simulation (VHS) in four different configurations (visually enhanced feedback on/off, force feedback on/off), and (b) analyzed the influence of the visual and haptic feedback for learning the concept of friction. Specifically, this study explored the role of an object’s size in friction. In a three-stage experiment (i.e., pre-test, experimentation, and post-test), 206 undergraduate students compared the friction force, speed, acceleration, and traveled distance between two cubes with the same weight but different sizes pushed on a smooth surface. Our results suggest that (a) VHS was an effective tool for promoting the learning of friction concepts actively, (b) learners in the VHS condition outperformed the learners in the PMT condition (PMT < VHS), (c) the easy identification of the forces by enhanced visual cues promoted the acquisition of scientific knowledge, (d) the haptic feedback promoted a grounded experience for learning about friction, and (e) learners in the Sequenced (H→H + V) condition had more learning benefits than the Simultaneous (H + V), Visual, and Haptic conditions. Students in the Sequenced (H→H + V) condition took advantage of the affordances of the virtual and physical manipulatives. The implication for teaching and learning is that the virtual and physical affordances of the learning tools and the students’ prior knowledge must be considered in the design of the VHS to enhance learning. For the education research, the study implied that body actions positively impacted the learning experience.
KW - affordances
KW - conceptual learning
KW - haptic
KW - physical manipulative
KW - statics
KW - visuohaptic simulation
UR - http://www.scopus.com/inward/record.url?scp=85152785393&partnerID=8YFLogxK
U2 - 10.3390/electronics12071659
DO - 10.3390/electronics12071659
M3 - Artículo
AN - SCOPUS:85152785393
SN - 2079-9292
VL - 12
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 7
M1 - 1659
ER -