Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning

Saul Calderon-Ramirez, Diego Murillo-Hernandez, Kevin Rojas-Salazar, Luis Alexander Calvo-Valverd, Shengxiang Yang, Armaghan Moemeni, David Elizondo, Ezequiel Lopez-Rubio, Miguel A. Molina-Cabello

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

11 Citas (Scopus)

Resumen

Computer aided diagnosis for mammogram images have seen positive results through the usage of deep learning architectures. However, limited sample sizes for the target datasets might prevent the usage of a deep learning model under real world scenarios. The usage of unlabeled data to improve the accuracy of the model can be an approach to tackle the lack of target data. Moreover, important model attributes for the medical domain as model uncertainty might be improved through the usage of unlabeled data. Therefore, in this work we explore the impact of using unlabeled data through the implementation of a recent approach known as MixMatch, for mammogram images. We evaluate the improvement on accuracy and uncertainty of the model using popular and simple approaches to estimate uncertainty. For this aim, we propose the usage of the uncertainty balanced accuracy metric.

Idioma originalInglés
Título de la publicación alojadaIJCNN 2021 - International Joint Conference on Neural Networks, Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9780738133669
DOI
EstadoPublicada - 18 jul 2021
Evento2021 International Joint Conference on Neural Networks, IJCNN 2021 - Virtual, Shenzhen, China
Duración: 18 jul 202122 jul 2021

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks
Volumen2021-July

Conferencia

Conferencia2021 International Joint Conference on Neural Networks, IJCNN 2021
País/TerritorioChina
CiudadVirtual, Shenzhen
Período18/07/2122/07/21

Huella

Profundice en los temas de investigación de 'Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning'. En conjunto forman una huella única.

Citar esto