Improving Semi-supervised Deep Learning by using Automatic Thresholding to Deal with Out of Distribution Data for COVID-19 Detection using Chest X-ray Images

Isaac Benavides-Mata, Saul Calderon-Ramirez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Semi-supervised learning (SSL) leverages both labeled and unlabeled data for training models when the labeled data is limited and the unlabeled data is vast. Frequently, the unlabeled data is more widely available than the labeled data, hence this data is used to improve the level of generalization of a model when the labeled data is scarce. However, in real-world settings unlabeled data might depict a different distribution than the labeled dataset distribution. This is known as distribution mismatch. Such problem generally occurs when the source of unlabeled data is different from the labeled data. For instance, in the medical imaging domain, when training a COVID-19 detector using chest X-ray images, different unlabeled datasets sampled from different hospitals might be used. In this work, we propose an automatic thresholding method to filter out-of-distribution data in the unlabeled dataset. We use the Mahalanobis distance between the labeled and unlabeled datasets using the feature space built by a pre-trained Image-net Feature Extractor (FE) to score each unlabeled observation. We test two simple automatic thresholding methods in the context of training a COVID-19 detector using chest X-ray images. The tested methods provide an automatic manner to define what unlabeled data to preserve when training a semi-supervised deep learning architecture.

Idioma originalInglés
Título de la publicación alojada2022 IEEE 4th International Conference on BioInspired Processing, BIP 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665470483
DOI
EstadoPublicada - 2022
Evento4th IEEE International Conference on BioInspired Processing, BIP 2022 - Cartago, Costa Rica
Duración: 15 nov 202217 nov 2022

Serie de la publicación

Nombre2022 IEEE 4th International Conference on BioInspired Processing, BIP 2022

Conferencia

Conferencia4th IEEE International Conference on BioInspired Processing, BIP 2022
País/TerritorioCosta Rica
CiudadCartago
Período15/11/2217/11/22

Huella

Profundice en los temas de investigación de 'Improving Semi-supervised Deep Learning by using Automatic Thresholding to Deal with Out of Distribution Data for COVID-19 Detection using Chest X-ray Images'. En conjunto forman una huella única.

Citar esto