Improving Performance of Error-Tolerant Applications: A Case Study of Approximations on an Off-the-Shelf Neural Accelerator

Tomas Gonzalez-Aragon, Jorge Castro-Godinez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Trending workloads and applications are leading many of the new advances in computer architecture and design paradigms. For instance, deep learning applications are transforming the way we do computing. On one hand, specific architectures are currently commercialized as neural processing units, specialized hardware accelerators for these types of applications, achieving significant performance improvements. On the other hand, design paradigms, such as approximate computing, exploit existing inherent tolerance to imprecise computations in these applications to reduce their computation complexity and produce energy-efficient implementations. Relevant available approximations are limited to the software layer to improve the performance of deep learning applications when using an off-the-shelf specialized accelerator alongside edge computing platforms. In this work, we present a case study of performance improvement by introducing approximate computing techniques to three deep learning classification applications. Our test platform is a Raspberry Pi 4, as edge computing device, and a Movidius Myriad X, as neural accelerator. Our experimental results show that using a mixture of approximate techniques can achieve a performance improvement from 20x to 48x with no accuracy degradation for a compute-intensive classification application.

Idioma originalInglés
Título de la publicación alojadaProceedings - 5th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665498326
DOI
EstadoPublicada - 2021
Evento5th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2021 - 5th Costa Rican Conference on Research in Computing and Informatics, JoCICI 2021 - San Jose, Estados Unidos
Duración: 25 oct 202129 oct 2021

Serie de la publicación

NombreProceedings - 5th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2021

Conferencia

Conferencia5th Jornadas Costarricenses de Investigacion en Computacion e Informatica, JoCICI 2021 - 5th Costa Rican Conference on Research in Computing and Informatics, JoCICI 2021
País/TerritorioEstados Unidos
CiudadSan Jose
Período25/10/2129/10/21

Huella

Profundice en los temas de investigación de 'Improving Performance of Error-Tolerant Applications: A Case Study of Approximations on an Off-the-Shelf Neural Accelerator'. En conjunto forman una huella única.

Citar esto