Generative Adversarial Network for Synthetic Imaging Data of Sub-optimal Conditions in Photovoltaic Panels

Efrén Jiménez-Delgado, A. Méndez-Porras, J. Alfaro-Velasco

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Image detection technology is currently used to perform inspection and detection of defects in solar panels. Deep learning models are typically used to process visual light images, thermal or infrared images. Building machine learning models takes miles or millions of images. Currently, there are few freely available or freely accessible image data sets that contain suboptimal conditions in solar panels. This paper proposed an Adversary Generative Network (GAN) model to build a data set of photovoltaic panels under suboptimal conditions for Deep Learning training. We use a data set created at the Tecnológico de Costa Rica to generate an adversary neural network model. In addition, we evaluate our model using a convolutional neural network that classifies whether or not a visual light image or thermal images contains suboptimal conditions.

Idioma originalInglés
Título de la publicación alojadaInformation Technology and Systems - Proceedings of ICITS 2022
EditoresÁlvaro Rocha, Carlos Ferrás, Efren Jimenez Delgado, Abel Méndez Porras
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas206-218
Número de páginas13
ISBN (versión impresa)9783030962920
DOI
EstadoPublicada - 2022
EventoInternational Conference on Information Technology and Systems, ICITS 2022 - San Carlos, Costa Rica
Duración: 9 feb 202211 feb 2022

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen414 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

ConferenciaInternational Conference on Information Technology and Systems, ICITS 2022
País/TerritorioCosta Rica
CiudadSan Carlos
Período9/02/2211/02/22

Huella

Profundice en los temas de investigación de 'Generative Adversarial Network for Synthetic Imaging Data of Sub-optimal Conditions in Photovoltaic Panels'. En conjunto forman una huella única.

Citar esto