FNNs Models for Regression of S-Parameters in Multilayer Interconnects with Different Electrical Lengths

Allan Sánchez-Masís, Renato Rimolo-Donadio, Kallol Roy, Modar Sulaiman, Christian Schuster

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Neural Networks are often used for classification problems, where the electrical system must meet certain specification or performance metrics by selecting the appropriate input parameters or features. However, in many scenarios, the full response of the system is required, for instance, in terms of S-parameters in the frequency domain. Learning this continuous system response is a non-trivial task. An efficient regression model needs to learn from the training data sampled at different frequency points. In this paper, a feed-forward neural network as a predictive S-parameter response model of multilayer interconnects is proposed. Hyperparameter optimization by genetic algorithms is employed, and it was found that the model complexity (number of trainable parameters) increases for longer maximum electrical lengths of the transmission. Therefore, it becomes increasingly difficult to derive a good prediction with long electrical lengths that covers all the frequency range of interest.

Idioma originalInglés
Título de la publicación alojada4th IEEE MTT-S Latin America Microwave Conference, LAMC 2023 - Proceedings
EditoresJ. R. Loo-Yau, Lina M. Aguilar-Lobo
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas82-85
Número de páginas4
ISBN (versión digital)9798350316407
DOI
EstadoPublicada - 2023
Evento4th IEEE MTT-S Latin America Microwave Conference, LAMC 2023 - San Jose, Costa Rica
Duración: 6 dic 20238 dic 2023

Serie de la publicación

Nombre4th IEEE MTT-S Latin America Microwave Conference, LAMC 2023 - Proceedings

Conferencia

Conferencia4th IEEE MTT-S Latin America Microwave Conference, LAMC 2023
País/TerritorioCosta Rica
CiudadSan Jose
Período6/12/238/12/23

Huella

Profundice en los temas de investigación de 'FNNs Models for Regression of S-Parameters in Multilayer Interconnects with Different Electrical Lengths'. En conjunto forman una huella única.

Citar esto