Feature Density as an Uncertainty Estimator Method in the Binary Classification Mammography Images Task for a Supervised Deep Learning Model

Ricardo Javier Fuentes-Fino, Saúl Calderón-Ramírez, Enrique Domínguez, Ezequiel López-Rubio, Marco A. Hernandez-Vasquez, Miguel A. Molina-Cabello

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Labeled medical datasets may include a limited number of observations for each class, while unlabeled datasets may include observations from patients with pathologies other than those observed in the labeled dataset. This negatively influences the performance of the prediction algorithms. Including out-of-distribution data in the unlabeled dataset can lead to varying degrees of performance degradation, or even improvement, by using a distance to measure how out-of-distribution a piece of data is. This work aims to propose an approach that allows estimating the predictive uncertainty of supervised algorithms, improving the behaviour when atypical samples are presented to the distribution of the dataset. In particular, we have used this approach to mammograms X-ray images applied to binary classification tasks. The proposal makes use of Feature Density, which consists of estimating the density of features from the calculation of a histogram. The obtained results report slight differences when different neural network architectures and uncertainty estimators are used.

Idioma originalInglés
Título de la publicación alojadaBioinformatics and Biomedical Engineering - 9th International Work-Conference, IWBBIO 2022, Proceedings
EditoresIgnacio Rojas, Olga Valenzuela, Fernando Rojas, Luis Javier Herrera, Francisco Ortuño
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas375-388
Número de páginas14
ISBN (versión impresa)9783031078019
DOI
EstadoPublicada - 2022
Evento9th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2022 - Gran Canaria, Espana
Duración: 27 jun 202230 jun 2022

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen13347 LNBI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia9th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2022
País/TerritorioEspana
CiudadGran Canaria
Período27/06/2230/06/22

Huella

Profundice en los temas de investigación de 'Feature Density as an Uncertainty Estimator Method in the Binary Classification Mammography Images Task for a Supervised Deep Learning Model'. En conjunto forman una huella única.

Citar esto