Evaluation of optimization metaheuristics in clustering

Javier Trejos Zelaya, Mario Villalobos Arias, Alex Murillo Fernández, Jeffry Chavarría Molina, Juan José Fallas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

We have evaluated five metaheuristics of combinatorial optimization applied in clustering by partitions: simulated annealing, tabu search, genetic algorithm, ant colonies and particle swarms, using data tables generated randomly according to some defined parameters. Those techniques were compared to classical methods (k-means and Ward's agglomerative clustering). Sixteen tables were generated (four controlled factors, with two levels each) with normally distributed variables and, for each one, the experiment was repeated 100 times in a multistart procedure. The within-class inertia was used as the criterion to compare the classifications obtained. Best results were obtained for ant colonies, simulated annealing and the genetic algorithm.

Idioma originalInglés
Título de la publicación alojada2014 International Work Conference on Bio-Inspired Intelligence
Subtítulo de la publicación alojadaIntelligent Systems for Biodiversity Conservation, IWOBI 2014 - Proceedings
EditoresCarlos M. Travieso-Gonzalez, Jorge Arroyo-Hernandez, Melvin Ramirez-Bogantes
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas154-161
Número de páginas8
ISBN (versión digital)9781479961740
DOI
EstadoPublicada - 30 sept 2014
Evento3rd IEEE International Work-Conference on Bioinspired Intelligence, IWOBI 2014 - Liberia, Costa Rica
Duración: 16 jul 201418 jul 2014

Serie de la publicación

Nombre2014 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2014 - Proceedings

Conferencia

Conferencia3rd IEEE International Work-Conference on Bioinspired Intelligence, IWOBI 2014
País/TerritorioCosta Rica
CiudadLiberia
Período16/07/1418/07/14

Huella

Profundice en los temas de investigación de 'Evaluation of optimization metaheuristics in clustering'. En conjunto forman una huella única.

Citar esto