Evaluating the significance of cutting planes of wood samples when training CNNs for forest species identification

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

With the goal of quantifying the importance of each of the cutting planes of wood samples in the training process of a convolutional neural network that identifies forest species based on images of those cutting planes, we propose a convolutional model that is trained from scratch with images of transverse, radial, and tangential sections of Costa Rican forest species wood samples. The best Top1-accuracy achieved is 89.58% when the network is trained with transverse sections only. Because this is more than 20% better than the accuracy achieved when using any of the other two sections individually, we conclude that this is the most significant section of all three. This is consistent with current practice of experts, who prefer this cutting plane when conducting manual identifications based on anatomical features of wood samples.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2018 IEEE 38th Central America and Panama Convention, CONCAPAN 2018
EditoresManuel N. Cardona
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538661222
DOI
EstadoPublicada - 28 dic 2018
Evento2018 IEEE 38th Central America and Panama Convention, CONCAPAN 2018 - San Salvador, El Salvador
Duración: 7 nov 20189 nov 2018

Serie de la publicación

NombreProceedings of the 2018 IEEE 38th Central America and Panama Convention, CONCAPAN 2018

Conferencia

Conferencia2018 IEEE 38th Central America and Panama Convention, CONCAPAN 2018
País/TerritorioEl Salvador
CiudadSan Salvador
Período7/11/189/11/18

Huella

Profundice en los temas de investigación de 'Evaluating the significance of cutting planes of wood samples when training CNNs for forest species identification'. En conjunto forman una huella única.

Citar esto