Enhancing Object Segmentation via Few-Shot Learning with Limited Annotated Data

Iván García-Aguilar, Syed Ali Haider Jafri, David Elizondo, Saul Calderón, Sarah Greenfield, Rafael M. Luque-Baena

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Significant advancements in machine learning in recent years have revolutionized multiple sectors. The Segment-Anything Model (SAM) is a notable example of state-of-the-art image segmentation. Despite claims of zero-shot generalization, SAM exhibits limitations in specific scenarios like medical mammography images. SAM generates three segmentation masks per image to address this and recommends selecting the one with the highest confidence score. However, this is not always the optimal choice. This paper introduces a system that extends SAM’s segmentation capabilities by automatically selecting the correct mask, leveraging few-shot learning methods and an Out-of-Distribution threshold strategy. Several backbones were subjected to experimentation, highlighting the relationship between the support set size and the model’s accuracy.

Idioma originalInglés
Título de la publicación alojadaThe 19th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO 2024 - Proceedings
EditoresHéctor Quintián, Esteban Jove, Emilio Corchado, Alicia Troncoso Lora, Francisco Martínez Álvarez, Hilde Pérez García, José Luis Calvo Rolle, Francisco Javier Martínez de Pisón, Pablo García Bringas, Álvaro Herrero Cosío, Paolo Fosci
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas32-41
Número de páginas10
ISBN (versión impresa)9783031750090
DOI
EstadoPublicada - 2025
Publicado de forma externa
Evento19th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2024 - Salamanca, Espana
Duración: 9 oct 202411 oct 2024

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen889 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia19th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2024
País/TerritorioEspana
CiudadSalamanca
Período9/10/2411/10/24

Huella

Profundice en los temas de investigación de 'Enhancing Object Segmentation via Few-Shot Learning with Limited Annotated Data'. En conjunto forman una huella única.

Citar esto