TY - JOUR
T1 - Engineering Atrazine Loaded Poly (lactic- co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges
AU - Schnoor, Brian
AU - Elhendawy, Ahmad
AU - Joseph, Suzanna
AU - Putman, Mark
AU - Chacón-Cerdas, Randall
AU - Flores-Mora, Dora
AU - Bravo-Moraga, Felipe
AU - Gonzalez-Nilo, Fernando
AU - Salvador-Morales, Carolina
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%. Therefore, there is a great need for the development of new methods to mitigate these issues. Here, we report for the first time the synthesis of poly(lactic-co-glycolic-acid) (PLGA) nanoherbicides loaded with atrazine as an active ingredient. We used potato plants as a biological model to assess the herbicidal activity of the engineered PLGA nanoherbicides. Our method produced nanoherbicides with an average size of 110 ± 10 nm prior to lyophilization. Fifty percent of the loaded atrazine in the PLGA matrix is released in 72 h. Furthermore, we performed Monte Carlo simulations to determine the chemical interaction among atrazine, PLGA, and the solvent system. One of the most significant outcomes of these simulations was to find the formation of a hydrogen bond of 1.9 Å between PLGA and atrazine, which makes this interaction very stable. Our in vitro findings showed that as atrazine concentration is increased in PLGA nanoparticles, potato plants undergo a significant decrease in stem length, root length, fresh weight, dry weight, and the number of leaves, with root length being the most affected. These experimental results suggest the herbicidal effectiveness of atrazine-loaded PLGA nanoherbicides in inhibiting the growth of the potato plant. Hence, we present the proof-of-concept for using PLGA nanoherbicides as an alternative method for inhibiting weed growth. Future studies will involve a deep understanding of the mechanism of plant-nanoherbicide interaction as well as the role of PLGA as a growth potentiator.
AB - The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%. Therefore, there is a great need for the development of new methods to mitigate these issues. Here, we report for the first time the synthesis of poly(lactic-co-glycolic-acid) (PLGA) nanoherbicides loaded with atrazine as an active ingredient. We used potato plants as a biological model to assess the herbicidal activity of the engineered PLGA nanoherbicides. Our method produced nanoherbicides with an average size of 110 ± 10 nm prior to lyophilization. Fifty percent of the loaded atrazine in the PLGA matrix is released in 72 h. Furthermore, we performed Monte Carlo simulations to determine the chemical interaction among atrazine, PLGA, and the solvent system. One of the most significant outcomes of these simulations was to find the formation of a hydrogen bond of 1.9 Å between PLGA and atrazine, which makes this interaction very stable. Our in vitro findings showed that as atrazine concentration is increased in PLGA nanoparticles, potato plants undergo a significant decrease in stem length, root length, fresh weight, dry weight, and the number of leaves, with root length being the most affected. These experimental results suggest the herbicidal effectiveness of atrazine-loaded PLGA nanoherbicides in inhibiting the growth of the potato plant. Hence, we present the proof-of-concept for using PLGA nanoherbicides as an alternative method for inhibiting weed growth. Future studies will involve a deep understanding of the mechanism of plant-nanoherbicide interaction as well as the role of PLGA as a growth potentiator.
KW - atrazine
KW - environmental technology
KW - nanoherbicides
KW - nanoparticles
KW - poly(lactic- co-glycolic-acid) (PLGA)
KW - polymers
UR - http://www.scopus.com/inward/record.url?scp=85050943722&partnerID=8YFLogxK
U2 - 10.1021/acs.jafc.8b01911
DO - 10.1021/acs.jafc.8b01911
M3 - Artículo
C2 - 30039704
AN - SCOPUS:85050943722
SN - 0021-8561
VL - 66
SP - 7889
EP - 7898
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 30
ER -