Enforcing Morphological Information in Fully Convolutional Networks to Improve Cell Instance Segmentation in Fluorescence Microscopy Images

Willard Zamora-Cárdenas, Mauro Mendez, Saul Calderon-Ramirez, Martin Vargas, Gerardo Monge, Steve Quiros, David Elizondo, Jordina Torrents-Barrena, Miguel A. Molina-Cabello

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Cell instance segmentation in fluorescence microscopy images is becoming essential for cancer dynamics and prognosis. Data extracted from cancer dynamics allows to understand and accurately model different metabolic processes such as proliferation. This enables customized and more precise cancer treatments. However, accurate cell instance segmentation, necessary for further cell tracking and behavior analysis, is still challenging in scenarios with high cell concentration and overlapping edges. Within this framework, we propose a novel cell instance segmentation approach based on the well-known U-Net architecture. To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model. The DDT output is subsequently used to train a top-model. The following top-models are considered: a three-class (e.g., foreground, background and cell border) U-net, and a watershed transform. The obtained results suggest a performance boost over traditional U-Net architectures. This opens an interesting research line around the idea of injecting morphological information into a fully convolutional model.

Idioma originalInglés
Título de la publicación alojadaAdvances in Computational Intelligence - 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Proceedings
EditoresIgnacio Rojas, Gonzalo Joya, Andreu Catala
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas36-46
Número de páginas11
ISBN (versión impresa)9783030850296
DOI
EstadoPublicada - 2021
Evento16th International Work-Conference on Artificial Neural Networks, IWANN 2021 - Virtual, Online
Duración: 16 jun 202118 jun 2021

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen12861 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia16th International Work-Conference on Artificial Neural Networks, IWANN 2021
CiudadVirtual, Online
Período16/06/2118/06/21

Huella

Profundice en los temas de investigación de 'Enforcing Morphological Information in Fully Convolutional Networks to Improve Cell Instance Segmentation in Fluorescence Microscopy Images'. En conjunto forman una huella única.

Citar esto