TY - JOUR
T1 - Effect of the co-treatment of synthetic faecal sludge and wastewater in an aerobic granular sludge system
AU - Barrios-Hernández, Mary Luz
AU - Buenaño-Vargas, Claribel
AU - García, Hector
AU - Brdjanovic, Damir
AU - van Loosdrecht, Mark C.M.
AU - Hooijmans, Christine M.
N1 - Publisher Copyright:
© 2020 The Authors
PY - 2020/11/1
Y1 - 2020/11/1
N2 - The co-treatment of two synthetic faecal sludges (FS-1 and FS-2) with municipal synthetic wastewater (WW) was evaluated in an aerobic granular sludge (AGS) reactor. After characterisation, FS-1 showed the following concentrations, representative for medium-strength FS: 12,180 mg TSS L−1, 24,300 mg total COD L−1, 93.8 mg PO3-P L−1, and 325 mg NH4-N L−1. The NO3-N concentration was relatively high (300 mg L−1). For FS-2, the main difference with FS-1 was a lower nitrate concentration (18 mg L−1). The recipes were added consecutively, together with the WW, to an AGS reactor. In the case of FS-1, the system was fed with 7.2 kg total COD m−3d−1 and 0.5 kg Nitrogen m−3d−1. Undesired denitrification occurred during feeding and settling resulting in floating sludge and wash-out. In the case of FS-2, the system was fed with 8.0 kg total COD m−3d−1 and 0.3 kg Nitrogen m−3d−1. The lower NO3-N concentration in FS-2 resulted in less floating sludge, a more stabilised granular bed and better effluent concentrations. To enhance the hydrolysis of the slowly biodegradable particulates from the synthetic FS, an anaerobic stand-by period was added and the aeration period was increased. Overall, when compared to a control AGS reactor, a lower COD consumption (from 87 to 35 mg g−1 VSS h−1), P-uptake rates (from 6.0 to 2.0 mg P g VSS−1 h−1) and NH4-N removal (from 2.5 to 1.4 mg NH4-N g VSS−1 h−1) were registered after introducing the synthetic FS. Approximately 40% of the granular bed became flocculent at the end of the study, and a reduction of the granular size accompanied by higher solids accumulation in the reactor was observed. A considerable protozoa Vorticella spp. bloom attached to the granules and the accumulated particles occurred; potentially contributing to the removal of the suspended solids which were part of the FS recipe.
AB - The co-treatment of two synthetic faecal sludges (FS-1 and FS-2) with municipal synthetic wastewater (WW) was evaluated in an aerobic granular sludge (AGS) reactor. After characterisation, FS-1 showed the following concentrations, representative for medium-strength FS: 12,180 mg TSS L−1, 24,300 mg total COD L−1, 93.8 mg PO3-P L−1, and 325 mg NH4-N L−1. The NO3-N concentration was relatively high (300 mg L−1). For FS-2, the main difference with FS-1 was a lower nitrate concentration (18 mg L−1). The recipes were added consecutively, together with the WW, to an AGS reactor. In the case of FS-1, the system was fed with 7.2 kg total COD m−3d−1 and 0.5 kg Nitrogen m−3d−1. Undesired denitrification occurred during feeding and settling resulting in floating sludge and wash-out. In the case of FS-2, the system was fed with 8.0 kg total COD m−3d−1 and 0.3 kg Nitrogen m−3d−1. The lower NO3-N concentration in FS-2 resulted in less floating sludge, a more stabilised granular bed and better effluent concentrations. To enhance the hydrolysis of the slowly biodegradable particulates from the synthetic FS, an anaerobic stand-by period was added and the aeration period was increased. Overall, when compared to a control AGS reactor, a lower COD consumption (from 87 to 35 mg g−1 VSS h−1), P-uptake rates (from 6.0 to 2.0 mg P g VSS−1 h−1) and NH4-N removal (from 2.5 to 1.4 mg NH4-N g VSS−1 h−1) were registered after introducing the synthetic FS. Approximately 40% of the granular bed became flocculent at the end of the study, and a reduction of the granular size accompanied by higher solids accumulation in the reactor was observed. A considerable protozoa Vorticella spp. bloom attached to the granules and the accumulated particles occurred; potentially contributing to the removal of the suspended solids which were part of the FS recipe.
KW - Aerobic granular sludge
KW - Co-treatment
KW - Digested faecal sludge
KW - Protozoa
KW - Suspended solids
KW - Vorticella spp.
UR - http://www.scopus.com/inward/record.url?scp=85086996329&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.140480
DO - 10.1016/j.scitotenv.2020.140480
M3 - Artículo
C2 - 32886969
AN - SCOPUS:85086996329
SN - 0048-9697
VL - 741
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 140480
ER -