Automated Classroom Attendance using a Machine Learning-Based Recognition System

Jorge Alfaro-Velasco, Abel Méndez-Porras, Efrén Jimenez Delgado, Leonardo Cardinale-Villalobos, Erick Morera Aguirre, Álvaro José Cervelión Bastidas, Andrés Alejandro Díaz Toro

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Manually tracking classroom attendance, an entrenched traditional method, presents significant challenges due to its susceptibility to errors and inefficiencies. These limitations not only consume valuable faculty time but also compromise the accuracy of academic records, affecting the evaluation of student engagement and performance. In response to this problem, we present an approach for automated classroom attendance using an embedded machine learning-based recognition system. This research strives to improve the accuracy, efficiency, and reliability of attendance tracking in educational settings. The heart of our research lies in the design and implementation of the system, clarifying the architecture, data flow, and integration into the classroom environment. The results of our analysis show the system's ability to track attendance while providing accurate information on its performance metrics. We also delve into the ethical and practical considerations of implementing such technology in the classroom. By automating the process using machine learning-based recognition, educational institutions can improve their operational efficiency, reduce errors, and ultimately provide a more productive learning environment. Our study opens the door to future avenues of research and technological advances in education.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education and Technology
Subtítulo de la publicación alojadaSustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0., LACCEI 2024
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9786289520781
DOI
EstadoPublicada - 2024
Evento22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024 - Hybrid, San Jose, Costa Rica
Duración: 17 jul 202419 jul 2024

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
ISSN (versión digital)2414-6390

Conferencia

Conferencia22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024
País/TerritorioCosta Rica
CiudadHybrid, San Jose
Período17/07/2419/07/24

Huella

Profundice en los temas de investigación de 'Automated Classroom Attendance using a Machine Learning-Based Recognition System'. En conjunto forman una huella única.

Citar esto