Assessing the Impact of a Preprocessing Stage on Deep Learning Architectures for Breast Tumor Multi-class Classification with Histopathological Images

Iván Calvo, Saul Calderon, Jordina Torrents-Barrena, Erick Muñoz, Domenec Puig

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

In this work, we assess the impact of the adaptive unsharp mask filter as a preprocessing stage for breast tumour multi-class classification with histopathological images, evaluating two state-of-the-art architectures, not tested so far for this problem to our knowledge: DenseNet, SqueezeNet and a 5-layer baseline deep learning architecture. SqueezeNet is an efficient architecture, which can be useful in environments with restrictive computational resources. According to the results, the filter improved the accuracy from 2% to 4% in the 5-layer baseline architecture, on the other hand, DenseNet and SqueezeNet show a negative impact, losing from 2% to 6% accuracy. Hence, simpler deep learning architectures can take more advantage of filters than complex architectures, which are able to learn the preprocessing filter implemented. Squeeze net yielded the highest per parameter accuracy, while DenseNet achieved a 96% accuracy, defeating previous state of the art architectures by 1% to 5%, making DenseNet a considerably more efficient architecture for breast tumour classification.

Idioma originalInglés
Título de la publicación alojadaHigh Performance Computing - 6th Latin American Conference, CARLA 2019, Revised Selected Papers
EditoresJuan Luis Crespo-Mariño, Esteban Meneses-Rojas
EditorialSpringer
Páginas262-275
Número de páginas14
ISBN (versión impresa)9783030410049
DOI
EstadoPublicada - 2020
Evento6th Latin American High Performance Computing Conference, CARLA 2019 - Turrialba, Costa Rica
Duración: 25 sept 201927 sept 2019

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1087 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia6th Latin American High Performance Computing Conference, CARLA 2019
País/TerritorioCosta Rica
CiudadTurrialba
Período25/09/1927/09/19

Huella

Profundice en los temas de investigación de 'Assessing the Impact of a Preprocessing Stage on Deep Learning Architectures for Breast Tumor Multi-class Classification with Histopathological Images'. En conjunto forman una huella única.

Citar esto