Approximating HW Accelerators through Partial Extractions onto Shared Artificial Neural Networks

Prattay Chowdhury, Jorge Castro Godínez, Benjamin Carrion Schafer

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

One approach that has been suggested to further reduce the energy consumption of heterogenous Systems-on-Chip (SoCs) is approximate computing. In approximate computing the error at the output is relaxed in order to simplify the hardware and thus, achieve lower power. Fortunately, most of the hardware accelerators in these SoCs are also amenable to approximate computing. In this work we propose a fully automatic method that substitutes portions of a hardware accelerator specified in C/C++/SystemC for High-Level Synthesis (HLS) to an Artificial Neural Network (ANN). ANNs have many advantages that make them well suited for this. First, they are very scalable which allows to approximate multiple separate portions of the behavioral description simultaneously on them. Second, multiple ANNs can be fused together and re-optimized to further reduce the power consumption. We use this to share the ANN to approximate multiple different HW accelerators in the same SoC. Experimental results with different error thresholds show that our proposed approach leads to better results than the state of the art.

Idioma originalInglés
Título de la publicación alojadaASP-DAC 2023 - 28th Asia and South Pacific Design Automation Conference, Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas410-415
Número de páginas6
ISBN (versión digital)9781450397834
DOI
EstadoPublicada - 16 ene 2023
Evento28th Asia and South Pacific Design Automation Conference, ASP-DAC 2023 - Tokyo, Japón
Duración: 16 ene 202319 ene 2023

Serie de la publicación

NombreProceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC

Conferencia

Conferencia28th Asia and South Pacific Design Automation Conference, ASP-DAC 2023
País/TerritorioJapón
CiudadTokyo
Período16/01/2319/01/23

Huella

Profundice en los temas de investigación de 'Approximating HW Accelerators through Partial Extractions onto Shared Artificial Neural Networks'. En conjunto forman una huella única.

Citar esto