Approximate Acceleration for CNN-based Applications on IoT Edge Devices

Jorge Castro-Godinez, Deykel Hernandez-Araya, Muhammad Shafique, Jorg Henkel

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

11 Citas (Scopus)

Resumen

Machine learning based sub-systems are increasingly becoming part of IoT edge devices, thereby requiring resource-efficient architectures and implementations, especially when subjected to battery-constrained scenarios. The non-exact nature of Convolutional Neural Networks (CNNs) opens the possibility to use approximate computations to reduce their required runtime and energy consumption on resource-constrained IoT edge devices without significantly compromising their classification output. In this paper, we propose a resilience exploration method and a novel approximate accelerator to speed up the execution of the convolutional layer, which is the most time consuming component of CNNs, for IoT edge devices. Trained CNNs with Caffe framework are executed on a System-on-Chip with reconfigurable hardware available, where the approximate accelerator is deployed. CNN applications developed with Caffe can take advantage of our proposed approximate acceleration to execute them on IoT edge devices.

Idioma originalInglés
Título de la publicación alojada2020 IEEE 11th Latin American Symposium on Circuits and Systems, LASCAS 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728134277
DOI
EstadoPublicada - feb 2020
Evento11th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2020 - San Jose, Costa Rica
Duración: 25 feb 202028 feb 2020

Serie de la publicación

Nombre2020 IEEE 11th Latin American Symposium on Circuits and Systems, LASCAS 2020

Conferencia

Conferencia11th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2020
País/TerritorioCosta Rica
CiudadSan Jose
Período25/02/2028/02/20

Huella

Profundice en los temas de investigación de 'Approximate Acceleration for CNN-based Applications on IoT Edge Devices'. En conjunto forman una huella única.

Citar esto