TY - JOUR
T1 - Approaches for the prediction of leaf wetness duration with machine learning
AU - Solís, Martín
AU - Rojas-Herrera, Vanessa
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6
Y1 - 2021/6
N2 - The prediction of leaf wetness duration (LWD) is an issue of interest for disease prevention in coffee plantations, forests, and other crops. This study analyzed different LWD prediction approaches using machine learning and meteorological and temporal variables as the models’ input. The information was collected through meteorological stations placed in coffee plantations in six different regions of Costa Rica, and the leaf wetness duration was measured by sensors installed in the same regions. The best prediction models had a mean absolute error of around 60 min per day. Our results demonstrate that for LWD modeling, it is not convenient to aggregate records at a daily level. The model performance was better when the records were collected at intervals of 15 min instead of 30 min.
AB - The prediction of leaf wetness duration (LWD) is an issue of interest for disease prevention in coffee plantations, forests, and other crops. This study analyzed different LWD prediction approaches using machine learning and meteorological and temporal variables as the models’ input. The information was collected through meteorological stations placed in coffee plantations in six different regions of Costa Rica, and the leaf wetness duration was measured by sensors installed in the same regions. The best prediction models had a mean absolute error of around 60 min per day. Our results demonstrate that for LWD modeling, it is not convenient to aggregate records at a daily level. The model performance was better when the records were collected at intervals of 15 min instead of 30 min.
KW - Coffee leaf
KW - Leaf wetness duration
KW - Machine learning
UR - http://www.scopus.com/inward/record.url?scp=85107212588&partnerID=8YFLogxK
U2 - 10.3390/BIOMIMETICS6020029
DO - 10.3390/BIOMIMETICS6020029
M3 - Artículo
AN - SCOPUS:85107212588
SN - 2313-7673
VL - 6
JO - Biomimetics
JF - Biomimetics
IS - 2
M1 - 29
ER -