ANN Hyperparameter Optimization by Genetic Algorithms for Via Interconnect Classification

Allan Sanchez-Masis, Allan Carmona-Cruz, Morten Schierholz, Xiaomin Duan, Kallol Roy, Cheng Yang, Renato Rimolo-Donadio, Christian Schuster

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

In an imbalanced classification problem the distribution of data across the known classes is biased or skewed. It poses a challenge for predictive modeling as most of the machine learning algorithms used for classification were designed around the assumption of an equal number of examples for each class. In this paper, we propose an approach to solve via interconnect classification problems by artificial neural networks, where the optimum hyperparameters of the networks are searched through a genetic algorithm. We solve the binary imbalanced classification problem for vias in time domain and frequency domain, including single and multilabel cases. Imbalanced learning techniques, like random oversampling and weighted binary crossentropy, are studied in combination with the genetic algorithm. We found standardization, F-measure, and imbalanced learning techniques are suitable to deal with minority label classification for this kind of signal integrity problems. The overall accuracy of our method is above 97%.

Idioma originalInglés
Título de la publicación alojadaSPI 2021 - 25th IEEE Workshop on Signal and Power Integrity
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665423885
DOI
EstadoPublicada - 10 may 2021
Evento25th IEEE Workshop on Signal and Power Integrity, SPI 2021 - Virtual, Online, Alemania
Duración: 10 may 202112 may 2021

Serie de la publicación

NombreSPI 2021 - 25th IEEE Workshop on Signal and Power Integrity

Conferencia

Conferencia25th IEEE Workshop on Signal and Power Integrity, SPI 2021
País/TerritorioAlemania
CiudadVirtual, Online
Período10/05/2112/05/21

Huella

Profundice en los temas de investigación de 'ANN Hyperparameter Optimization by Genetic Algorithms for Via Interconnect Classification'. En conjunto forman una huella única.

Citar esto