An Exploration of Accuracy Configurable Matrix Multiply-Addition Architectures using HLS

Luis G. Leon-Vega, Eduardo Salazar-Villalobos, Jorge Castro-Godinez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Low-power consumption and constraint resources limit the implementation of deep learning inference solutions at the edge. Besides, the approximate computing paradigm reports promising techniques for the design of DNN accelerators to deal with inherent limitations of the edge. This paper summarises the automatic generation of generic matrix multiplication-addition (GEMMA) processing elements (PEs), leveraging High-Level Synthesis and emphasising in adaptable matrix size, data bit-width, and data type for accuracy configuration, and their impact on the overall design resource consumption. For generated PEs efficiency evaluation, this work presents a novel Figure of merit that considers computing performance and resource utilisation regarding the FPGA platform underneath. Finally, we analyse the impact of different design configurations in the numerical errors introduced due to the output bit-width preservation regarding the input, and matrix size, data bit-width and type configuration.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2022 IEEE Dallas Circuits and Systems Conference, DCAS 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665498852
DOI
EstadoPublicada - 2022
Evento15th IEEE Dallas Circuits and Systems Conference, DCAS 2022 - Richardson, Estados Unidos
Duración: 17 jun 202219 jun 2022

Serie de la publicación

NombreProceedings of the 2022 IEEE Dallas Circuits and Systems Conference, DCAS 2022

Conferencia

Conferencia15th IEEE Dallas Circuits and Systems Conference, DCAS 2022
País/TerritorioEstados Unidos
CiudadRichardson
Período17/06/2219/06/22

Huella

Profundice en los temas de investigación de 'An Exploration of Accuracy Configurable Matrix Multiply-Addition Architectures using HLS'. En conjunto forman una huella única.

Citar esto