A User-Friendly Ecosystem for AI FPGA-Based Accelerators

Luis G. Leon-Vega, Erick Obregon-Fonseca, Jorge Castro-Godinez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The introduction of FPGAs in High-Performance Embedded Computing and Artificial Intelligence still faces chal-enges regarding the difficulty of getting started. It requires hardware knowledge, familiarity with multiple tooling, libraries and frameworks and long synthesis times. To encourage the usage of FPGAs, this work proposes an ecosystem that includes a library with a set of pre-built accelerators for common Digital Signal Processing and Artificial Intelligence workloads, an engine for runtime arbitrary-precision quantisation and an agnostic API, allowing the development of FPGA-accelerated user applications while abstracting the details about the FPGA design and implementation. Our approach is based on hardware reuse, introducing software resource management of a series of pre-built IP cores, allowing low-end FPGAs to be used as hardware accelerators and multiple applications to share resources. Our work is better than managed FPGA standalone applications with Vitis HLS-based quantisation, accelerating 1.22 x, thanks to our quantisation engine, which accelerates 5.12 x the quantisation and 13.30 x the de-quantisation, while keeping close the accelerator execution times.

Idioma originalInglés
Título de la publicación alojada2024 IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350349597
DOI
EstadoPublicada - 2024
Evento2024 IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2024 - London, Reino Unido
Duración: 29 jul 202431 jul 2024

Serie de la publicación

Nombre2024 IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2024

Conferencia

Conferencia2024 IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2024
País/TerritorioReino Unido
CiudadLondon
Período29/07/2431/07/24

Huella

Profundice en los temas de investigación de 'A User-Friendly Ecosystem for AI FPGA-Based Accelerators'. En conjunto forman una huella única.

Citar esto