TY - GEN
T1 - A First Glance to the Quality Assessment of Dental Photostimulable Phosphor Plates with Deep Learning
AU - Bermudez, Ariana
AU - Calderon-Ramirez, Saul
AU - Thang, Trevor
AU - Tyrrell, Pascal
AU - Moemeni, Armaghan
AU - Yang, Shengxiang
AU - Torrents-Barrena, Jordina
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - Photostimulable Phosphor Plates are commonly used in digital X-ray imaging for dentistry. During its usage, these plates get damaged, influencing the diagnosis performance and confidence of the dentistry professional. We propose a deep learning based classifier to discard or extend the use of photostimulable phosphor (PSP) plates based on their physical damage. The system automatically assesses, for the first time in the literature, when dentists should discard their plates. To validate our methodology, an in-house dataset is built on 25 PSP artifact masks (Carestream, CS 7600) digitally superimposed over 100 Complementary Metal-oxide-semiconductor (CMOS) periapical images (Carestream, RVG 6200) with known radiologic interpretations. From these 2500 images, unique subsets of 100 images were evaluated by 25 dentists to find periapical inflammatory lesions on the tooth. Doctors' opinion on whether the plates should be discarded or not was also collected. State-of-the-art deep convolutional networks were tested using fivefold cross validation, yielding classification accuracies from 87% to almost 89%. Specifically, InceptionV3 and Resnet50 obtained the best performances with statistical significance. Qualitative heat-maps showed that such models can identify and employ artifacts to decide on whether to discard the PSP plate or not. This work intends to be the base line for future works related to the automatic PSP plate assessment.
AB - Photostimulable Phosphor Plates are commonly used in digital X-ray imaging for dentistry. During its usage, these plates get damaged, influencing the diagnosis performance and confidence of the dentistry professional. We propose a deep learning based classifier to discard or extend the use of photostimulable phosphor (PSP) plates based on their physical damage. The system automatically assesses, for the first time in the literature, when dentists should discard their plates. To validate our methodology, an in-house dataset is built on 25 PSP artifact masks (Carestream, CS 7600) digitally superimposed over 100 Complementary Metal-oxide-semiconductor (CMOS) periapical images (Carestream, RVG 6200) with known radiologic interpretations. From these 2500 images, unique subsets of 100 images were evaluated by 25 dentists to find periapical inflammatory lesions on the tooth. Doctors' opinion on whether the plates should be discarded or not was also collected. State-of-the-art deep convolutional networks were tested using fivefold cross validation, yielding classification accuracies from 87% to almost 89%. Specifically, InceptionV3 and Resnet50 obtained the best performances with statistical significance. Qualitative heat-maps showed that such models can identify and employ artifacts to decide on whether to discard the PSP plate or not. This work intends to be the base line for future works related to the automatic PSP plate assessment.
KW - Deep Learning
KW - Dentistry
KW - Photostimulable Phosphor Plates
KW - Quality Assessment
UR - http://www.scopus.com/inward/record.url?scp=85093819746&partnerID=8YFLogxK
U2 - 10.1109/IJCNN48605.2020.9206779
DO - 10.1109/IJCNN48605.2020.9206779
M3 - Contribución a la conferencia
AN - SCOPUS:85093819746
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 International Joint Conference on Neural Networks, IJCNN 2020
Y2 - 19 July 2020 through 24 July 2020
ER -