A Comparative Study of Deep Learning Frameworks Applied to Coffee Plant Detection from Close-Range UAS-RGB Imagery in Costa Rica

Sergio Arriola-Valverde, Renato Rimolo-Donadio, Karolina Villagra-Mendoza, Alfonso Chacón-Rodriguez, Ronny García-Ramirez, Eduardo Somarriba-Chavez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Introducing artificial intelligence techniques in agriculture offers new opportunities for improving crop management, such as in coffee plantations, which constitute a complex agroforestry environment. This paper presents a comparative study of three deep learning frameworks: Deep Forest, RT-DETR, and Yolov9, customized for coffee plant detection and trained from images with a high spatial resolution (cm/pix). Each frame had dimensions of 640 × 640 pixels acquired from passive RGB sensors onboard a UAS (Unmanned Aerial Systems) system. The image set was structured and consolidated from UAS-RGB imagery acquisition in six locations along the Central Valley, Costa Rica, through automated photogrammetric missions. It was evidenced that the RT-DETR and Yolov9 frameworks allowed adequate generalization and detection with mAP50 values higher than 90% and mAP5095 higher than 54%, in scenarios of application with data augmentation techniques. Deep Forest also achieved good metrics, but noticeably lower when compared to the other frameworks. RT-DETR and Yolov9 were able to generalize and detect coffee plants in unseen scenarios that include complex forest structures within tropical agroforestry Systems (AFS).

Idioma originalInglés
Número de artículo4617
PublicaciónRemote Sensing
Volumen16
N.º24
DOI
EstadoPublicada - dic 2024

Huella

Profundice en los temas de investigación de 'A Comparative Study of Deep Learning Frameworks Applied to Coffee Plant Detection from Close-Range UAS-RGB Imagery in Costa Rica'. En conjunto forman una huella única.

Citar esto