A 1.9 nW Timer and Clock Generation Unit for Low Data-Rate Implantable Medical Devices

Pablo Mendoza Ponce, Gayas Sayed, Lait Abu Saleh, Wolfgang H. Krautschneider, Matthias Kuhl

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

This work presents a thyristor-based low power timer for wake up control of implantable monitoring devices, as well as a clock generation unit based on said approach. By using CMOS thyristors as delay elements in a ring oscillator, major drawbacks of conventional ring oscillators, such as a high stage count of inverters and capacitors with large currents flowing t o g round d uring s witching, c an b e o vercome. T his is particularly relevant for low frequency generation where these issues become even more critical in terms of power and area. Thyristors generate larger delays per stage while presenting a faster transition when switching between states, when compared to a typical CMOS inverter, an thus demand a smaller dynamic power. Timer, clock gating control and clock generation units were combined, implemented, and fabricated in 350 nm CMOS technology. The timer is able to wake up the clocking system (and hence a digital control unit) every 32.45 s with a power budget of less than 2 nW, while the clock generation unit produces a signal of 8.2 kHz.

Original languageEnglish
Title of host publication2020 IEEE 11th Latin American Symposium on Circuits and Systems, LASCAS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728134277
DOIs
StatePublished - Feb 2020
Event11th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2020 - San Jose, Costa Rica
Duration: 25 Feb 202028 Feb 2020

Publication series

Name2020 IEEE 11th Latin American Symposium on Circuits and Systems, LASCAS 2020

Conference

Conference11th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2020
Country/TerritoryCosta Rica
CitySan Jose
Period25/02/2028/02/20

Keywords

  • Biomedical electronics
  • CMOS Thyristor
  • Leakage currents
  • Ring oscillators
  • Timing

Fingerprint

Dive into the research topics of 'A 1.9 nW Timer and Clock Generation Unit for Low Data-Rate Implantable Medical Devices'. Together they form a unique fingerprint.

Cite this